Search results

Search for "focussed ion beam" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Helium ion microscope – secondary ion mass spectrometry for geological materials

  • Matthew R. Ball,
  • Richard J. M. Taylor,
  • Joshua F. Einsle,
  • Fouzia Khanom,
  • Christelle Guillermier and
  • Richard J. Harrison

Beilstein J. Nanotechnol. 2020, 11, 1504–1515, doi:10.3762/bjnano.11.133

Graphical Abstract
  • Carl Zeiss SMT Inc., Peabody, MA, USA 10.3762/bjnano.11.133 Abstract The helium ion microscope (HIM) is a focussed ion beam instrument with unprecedented spatial resolution for secondary electron imaging but has traditionally lacked microanalytical capabilities. With the addition of the secondary ion
  • focussed ion beam (FIB) instrument, which uses a gas field ion source (GFIS) to create highly focussed beams of noble gas ions, utilising the same working principle as the field ion microscope (FIM). This was originally used to form a primary helium beam [1], but the principle of the GFIS has since been
PDF
Album
Full Research Paper
Published 02 Oct 2020

Electromigration-induced directional steps towards the formation of single atomic Ag contacts

  • Atasi Chatterjee,
  • Christoph Tegenkamp and
  • Herbert Pfnür

Beilstein J. Nanotechnol. 2020, 11, 680–687, doi:10.3762/bjnano.11.55

Graphical Abstract
  • shell effects, can be discriminated. Although the directional motion of atoms during EM leads to specific properties such as the instabilities mentioned, similarities to mechanically opened contacts with respect to cross-sectional stability were found. Keywords: electromigration; focussed ion beam
PDF
Album
Full Research Paper
Published 22 Apr 2020

Group-13 and group-15 doping of germanane

  • Nicholas D. Cultrara,
  • Maxx Q. Arguilla,
  • Shishi Jiang,
  • Chuanchuan Sun,
  • Michael R. Scudder,
  • R. Dominic Ross and
  • Joshua E. Goldberger

Beilstein J. Nanotechnol. 2017, 8, 1642–1648, doi:10.3762/bjnano.8.164

Graphical Abstract
  • measured using X-ray fluorescence on an Olympus X-5000 Mobile XRF System. SEM and EDX were performed using a FEI Helios Nanolab 600 dual beam focussed ion beam/scanning electron microscope. X-ray photoelectron spectroscopy was performed using a Kratos Axis ultra X-ray photoelectron spetrometer with a
PDF
Album
Full Research Paper
Published 09 Aug 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • focussed-ion-beam (FIB) prepared cross-sections of the PVD MoS2 films. According to the fit of the experimental XRR curves (not shown here) the surface roughness (σsurf) is ≈1.2 nm for the RT film and ≈0.6 nm for films deposited at 400 °C. While the σsurf of the RT films is consistent with the AFM results
  • the SiO2/Si support were fabricated using focussed ion beam (FIB) sputtering at IB settings of 30 kV accelerating voltage and successively decreasing IB currents from 65 nA to 50 pA. The 90–120 nm thick sample foils were subsequently checked for film thickness accuracy determination in a Philips CM200
PDF
Album
Full Research Paper
Published 22 May 2017

Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films

  • Patrik Rath,
  • Svetlana Khasminskaya,
  • Christoph Nebel,
  • Christoph Wild and
  • Wolfram H.P. Pernice

Beilstein J. Nanotechnol. 2013, 4, 300–305, doi:10.3762/bjnano.4.33

Graphical Abstract
  • waveguide fabricated this way is shown in Figure 1b. Focussed ion beam (FIB) milling is used to cut through a waveguide cross-section, which is the reason for the line features at the edge of the waveguide. The FIB image reveals that the sidewalls resulting from the etching are near vertical, illustrating
  • 15 nm rms is determined. (b) Cross-sectional SEM image of a nanophotonic waveguide cut by focussed-ion-beam milling. The diamond, e-beam resist, and buried oxide layers are marked in a false-colour overlay. (a) SEM image of a fabricated focussing grating coupler. Light propagating through the
PDF
Album
Full Research Paper
Published 07 May 2013
Other Beilstein-Institut Open Science Activities